L

Parallel Optimization of Meshes
on Heterogeneous Computing
Systems

Eric Shaffer

Department of Computer Science
University of lllinois at Urbana-Champaign

Slide 1

Collaborators

Work done with

8§ Zuofu Cheng (Illinois)
8 Raine Yeh (Purdue)

8 George Zagaris (LLNL)
8 Luke Olson (Illinois)

Slide 2

Mesh Quality

8 Mesh quality is a key concern
In engineering simulations

W h:
e

. " ‘-\:“I\ L VA i i
§ Mesh element shape impacts {1 \INENEIY' 2
efficiency and accuracy LN

4

- f

LA HI'

8 Mesh optimization seeks to
Improve mesh quality

8 Image from DOE ASC Center
for Simulation of Advanced
Rockets (1997-2007) Slide 3

Measuring I\/Iesh Quallty

§ Lots of metrics

8 Some measure actual
errorbeSt approaCh 29 0.6696 08598 0.9

8 e.g. adjoint error estimation /ﬁ d 4 4 ﬁ <\

0.2541 06716 0.8531 0.9340 0.9703 0.9867 0.9940

8 Measuring actual error is hard % b Q Q (7 Q

§CompUtathna”yeXpenSNe 02824 0.669 0.9 9844 0.9950

8 Generally not solver- %% % @ % Q @

0.2825 0.6073 0.8 0.9408 0.9784 0.9922

independent o ®» % @ % @ % @

§ ..alternative is to base quality
on element geometry

§ mean ratio
8 dihedral angle

Slide 4

Quality I\/Ietrlc Inverse I\/Iean Ratlo (II\/IR)

8 For tetrahedral elements, assume equilateral is ideal

8 Given an element with vertices (a, b , ¢, d) we form a 3x3

matrix A of edges and a 3x3 matrix W representing the

Ideal element

1

0

0

b—a
c—a
d—a

L
2
J3

1

2
V3

2

0

6
V2

3

(\)

Slide 5

- - 2
§ Inverse Mean Ratio is then H 4 W_IHF

2
3\det(A W“)F
8 AW-lis identity when A=W
8 If element is just ideal scaled, AW-! is the scaling factor
8 Metric is invariant to scaling rotation and translation
§ Values range from 1 to oo

8 Big is bad

Slide 6

Optimization of Tetrahedral Meshes:
Our Approach

8 Optimize each interior vertex locally
8 Generate a position to get min max IMR in 1-ring of elements

8§ Taken from Freitag, Jones, Plassmann [1999] S b

8 Can apply similar strategy to surface vertices d
8 Move a vertex to optimize IMR within the one-ring
8 Constrain the search space
8 Keep vertex in tangent plane to the mesh € A
8 Maintains fidelity to original shape (more or less)
8 Also allows us to use 2D optimization instead of 3D
8 Further constrain movement to avoid
8 element inversion
8 fold-over on surface

8 Note that global mesh quality never decreases lide 7

Worst element is the limiting condition

Optimization proceeds by minimizing
maximum IMR
8§ Shift vertex positions to achieve lower IMR

v erse mean ratio
(8]
|

Worst quality element shifts fromoneto =7 U
another as optimization proceeds... % I

§ Max IMR is a non-smooth function : usu

15
05" 05 1

. ¥ vertex position
¥ vartex position p

Example: two triangular elements sharing
a vertex

Slide 8

mooth Function

_”:‘-

Optimizing a Nn-S

8 Ignore the problem and hope space is smooth enough to
find a good solution

8 e.g. use gradient descent method

8 Use a derivative-free method

8 e.g. Pattern Search [1] or Nelder-Mead
8 Change quality metric

8 e.g. use average instead of worst [2]

[1] Lori Freitag, Patrick Knupp, Todd Munson, and Suzanne Shontz. A comparison of two optimization
methods for mesh quality improvement. In Proceedings, 11th International Meshing Roundtable,
pages 29—40, September 2002.

[2] Lori Freitag, Patrick Knupp, Todd Munson, and Suzanne Shontz. A comparison of inexact newton

and coordinate descent mesh optimization techniques. In Proceedings of the 13th International
Meshing Roundtable, pages 243-254, Williamsburg, VA, September 2004,

Slide 9

One Research Goal:
Compare Numerical Optimization Methods

8 Tried several different numerical methods
8 Goal was to determine which worked best....
8 Gradient Descent
8 Broyden-Fletcher-Goldfarb-Shanno (BFGS)
8 Nelder-Mead simplex method
8 Derivative-free method
8 Gradient-based methods require derivatives
8 You can estimate them numerically
8 Or...you could compute it analytically at a point

Slide 10

= -4

Gradient Descent

Gradient Descent

» Uses the negative of the function gradient as the search
direction.

= We use a central difference approximation
Splfl(x) =1 (x + %h) —f (x — %h) to estimate the gradient.

= Pick direction as p, = —Vf(x,), perform line search.

» Parameters are step size and line search density (we cannot
make any assumptions due to non-smooth nature of problem, so
we have to sample).

Slide 11

BFGS

Broyden-Fletcher-Goldfarb-Shanno (BFGS)

At step k, the search direction py is solved using:

Bxpx = —Vf(xy)

and By, the approximate Hessian, is updated at each step with

B —B. + Yk _ By.siSi B
k+1 — Pk T T
YiSk S, BSy

and y, = Vf(xg41) — VI (x)
Shown to have good performance even for non-smooth
optimizations [4].

Where S.IC — x;{ — x;{_l

[4] A.S. Lewis and M.L. Overton. Nonsmooth optimization via BFGS. Submitted to SIAM Journal of
Optimization, 20009.

Nelder Mead

e Optimization is evaluated %2

across simplex: convex hull of

n+1 vertices for n-dimensional

problem. #0 "1,
e For tetrahedral mesh, simplex is

also a tetrahedron (not to be confused with
the elements of the mesh).

e Performsa series of transformations of simplex to decrease function
value at vertices.

e Terminate when function value is small enough (early termination),
when simplex is small enough, or when function value at simplex
points are close enough.

e Derivative free.

Slide 13

‘"'cuMPUTE

NIVERSITY ||||\| AT LRBA

Parallelization

N AN
§ Want to use all processors available on a system © o'\,
§ Per-thread optimization of a vertex position v e/
§ Use both CPU and GPU cores \ A

8§ Local approach exposes fine-grained parallelism
8 Cannot simultaneously optimize neighboring vertices
8 Any independent set of vertices can be optimized in parallel
8 Use graph-coloring heuristic First Fit to create independent sets

8 First Fit
8 Serial, greedy coloring of vertices...
8 Colors are integer labels
8 For each vertex and assign lowest integer label not used on a neighbor
8 Optimal coloring minimizing number of sets is NP-Hard

Slide 14

8 It is the bottleneck in terms of scalability
8 For large meshes non-locality causes bad memory access pattern
8 There are distributed/parallel algorithms that we have not explored
8 Advice would be welcomed....

8§ Different orderings of vertex optimizations produce different final qualities
8 Not clear how (or if) coloring could be biased to produced better orderings

e Slide 15

Load Balancing

8 Which vertices are optimized on the CPU vs. GPU
8 Current implementation uses an admittedly poor heuristic
8 Surface optimized on CPU and volume on GPU
8 Why?
8 Surface is a 2D object...should generate smaller sets
8 Smaller sets would hide GPU latency less well
8 Architecture of current software made it the easiest approach

8 Better approach would be to use a threshold size for a set
8 Determine threshold based on bus latency estimate

Slide 16

=

GPU Implemenation (rmi)

Nelder-mead uses too many registers (capped at 63 in pre-K20
systems, limiting occupacy to 33%).

Instead, use GPU as a streaming processor, cache entire
neighborhood in shared memory.

Entire shared memory (48KB) is consumed by 1 block, so only 1
block can occupy SM. Each vertex is float3 + index = 16 bytes.
Connectivity table is also stored in shared memory.

Typically, can still use 64 thread blocks (on some high connectivity
meshes, only 32 thread blocks are possible).

Occupancy goes way down (4%), but paradoxically, performance is
increased by 25%.

Slide 17

--\'.-,_-_

GPU Implemenation

8 Higher number of registers per-thread
8 Register spill is avoided
8 Speedup of 2.5 over Fermi class

8 On either class of hardware
8 No register spill for BFGS or Gradient Descent

Slide 18

Sidenote: Surface I\/IeshFeature Preservatlon

8 Medial Quadric suggested by
Jiao and Bayyana [2008]

8 Normal tensor for a vertex v
M= Zwl.nin;r
8 Sum of area weighting outer-product of face normal
around v
8 Eigenvalues of tensor classify vertices
8 smooth (three distinct eigenvalues)
8 ridge (two distinct eigenvalues)
8 corner (one distinct eigenvalue)
8 Computation is local and parallelizable
8 On ridges optimization can be done by golden section search
§ Convergence guarantee for unimodal functions

Slide 19

__.:_‘:

Experimental Setup

8 Xeon X5650 CPU, 6 cores at 2.67 GHz, 16GB main memory
8 C2050 GPU (Fermi class) 448 cores and 2.6GB memory
8 GTX Titan 2688 cores and 6GB memory

8 OpenMP+CUDA

Slide 20

COMPUTER SCIENC

LA P ARG
Y OF ILLINGIS AT L RBANAGHAMI i

Results: Quality Comparison

Table 1 Quality of optimized meshes compared to original

Mesh Number Maximum IMR after Quality Quality
of Elements No Optimization Interior Only Optimization Full Optimization
Small Rocket 468,623 2.229 1.992 1.84
Big Sphere 4,720,255 8.045 5.813 3.705
Big Rocket 14,992,367 14.971 5.0897 3.566

Table 2 Quality of combined optimization with different methods on GTX Titan (normalized to GPU time of 100 iterations of Nelder-Mead)

Mesh Number Quality Quality Quality
of Elements Nelder-Mead BFGS Gradient Descent
Small Rocket 468,623 1.84 1.99 1.99
Big Sphere 4,720,255 3.705 4.34 4.44
Big Rocket 14,992,367 3.566 3.93 3.84

Slide 21

TER SCIENG

A AP AIGN

Results: Speedup over serial

Table 3 Performance comparison of parallel methods with serial
(a) Speedup over serial of interior vertex optimization
Serial OpenMP C2050 GTX Titan

Mesh Interior Vertices) (Speedup) (Speedup) (Speedup)
Small Rocket 58,981 60.7 8.4 8.0 14.0
Big Sphere 290,739 571.1 7.1 94 21.5
Big Rocket 2,202,793 1967.2 7.7 59 16.4
(b) Speedup over serial of surface vertex optimization (c) Speedup over serial of combined optimization (GTX Titan)
Mesh Surface Vertices Serial - OpenMP Elements Total Vertices Serial - Parallel CPU*GPU
(s) (Speedup)) (Speedup)
Small Rocket 38,673 16.0 3.1 468,623 97,654 76.8 14.6
Big Sphere 1,048,578 341.1 25 4,720,255 1,339,317 912.2 109
Big Rocket 576,688 381.5 4.1 14,992,367 2,779.481 2348.7 15.7

Slide 22

	Parallel Optimization of Meshes on Heterogeneous Computing Systems
	Collaborators
	Mesh Quality
	Measuring Mesh Quality
	Quality Metric: Inverse Mean Ratio (IMR)
	Inverse Mean Ratio (IMR)
	Optimization of Tetrahedral Meshes: �Our Approach
	Min-Max Optimization is Non-Smooth
	Optimizing a Non-Smooth Function
	One Research Goal: �Compare Numerical Optimization Methods
	Gradient Descent
	BFGS
	Nelder Mead
	Parallelization
	Issues with First-Fit Coloring
	Load Balancing
	GPU Implementation (Fermi)
	GPU Implementation (Kepler SMX)
	Sidenote: Surface Mesh Feature Preservation
	Experimental Setup
	Results: Quality Comparison
	Results: Speedup over serial

