Parallel Optimization of Meshes on Heterogeneous Computing Systems

Eric Shaffer

Department of Computer Science University of Illinois at Urbana-Champaign

COMPUTER SCIENCE

Collaborators

Work done with

- Suofu Cheng (Illinois)
- Saine Yeh (Purdue)
- **§** George Zagaris (LLNL)
- § Luke Olson (Illinois)

Mesh Quality

- Mesh quality is a key concern in engineering simulations
- Mesh element shape impacts efficiency and accuracy
- Mesh optimization seeks to improve mesh quality
- Image from DOE ASC Center for Simulation of Advanced Rockets (1997-2007)

Measuring Mesh Quality

- S Lots of metrics
- Some measure actual error...best approach
 - § e.g. adjoint error estimation
- Measuring actual error is hard
 - Somputationally expensive
 - Senerally not solverindependent
- Solution is to base quality on element geometry
 - § mean ratio
 - § dihedral angle

Quality Metric: Inverse Mean Ratio (IMR)

For tetrahedral elements, assume equilateral is ideal
 Given an element with vertices (a, b, c, d) we form a 3x3 matrix A of edges and a 3x3 matrix W representing the ideal element

$$A = \begin{bmatrix} b-a \\ c-a \\ d-a \end{bmatrix}$$
$$W = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{6} \\ 0 & 0 & \frac{\sqrt{2}}{3} \end{bmatrix}$$

Inverse Mean Ratio (IMR)

Inverse Mean Ratio is then

$$\frac{\left\|AW^{-1}\right\|_{F}^{2}}{B\left|\det(AW^{-1})\right|^{\frac{2}{3}}}$$

- SAW⁻¹ is identity when A=W
- **§** If element is just ideal scaled, AW⁻¹ is the scaling factor
- S Metric is invariant to scaling rotation and translation
- § Values range from 1 to ∞
- § Big is bad

Optimization of Tetrahedral Meshes: Our Approach

§ Optimize each interior vertex *locally*

- Senerate a position to get min max IMR in 1-ring of elements
- Taken from Freitag, Jones, Plassmann [1999]
- S Can apply similar strategy to surface vertices
 - S Move a vertex to optimize IMR within the one-ring
 - S Constrain the search space
 - S Keep vertex in tangent plane to the mesh
 - S Maintains fidelity to original shape (more or less)
 - S Also allows us to use 2D optimization instead of 3D
 - § Further constrain movement to avoid
 - § element inversion
 - § fold-over on surface
- Note that *global* mesh quality never decreases

Min-Max Optimization is Non-Smooth

S Worst element is the limiting condition

- Optimization proceeds by minimizing maximum IMR
 - Shift vertex positions to achieve lower IMR
- Source of the second second
 - S Max IMR is a non-smooth function
- Example: two triangular elements sharing a vertex

COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT URBANACHAMPAIGN

Optimizing a Non-Smooth Function

Ignore the problem and hope space is smooth enough to find a good solution

- s e.g. use gradient descent method
- Suse a derivative-free method
 - § e.g. Pattern Search [1] or Nelder-Mead

Schange quality metric

§ e.g. use average instead of worst [2]

[1] Lori Freitag, Patrick Knupp, Todd Munson, and Suzanne Shontz. A comparison of two optimization methods for mesh quality improvement. In Proceedings, 11th International Meshing Roundtable, pages 29–40, September 2002.

[2] Lori Freitag, Patrick Knupp, Todd Munson, and Suzanne Shontz. A comparison of inexact newton and coordinate descent mesh optimization techniques. In Proceedings of the 13th International Meshing Roundtable, pages 243–254, Williamsburg, VA, September 2004.

One Research Goal: Compare Numerical Optimization Methods

COMPUTER SCI

§ Tried several different numerical methods

- Soal was to determine which worked best....
- § Gradient Descent
- Store Fletcher-Goldfarb-Shanno (BFGS)
- S Nelder-Mead simplex method
 - Serivative-free method
- S Gradient-based methods require derivatives
 - **§** You can estimate them numerically
 - Sor...you could compute it analytically at a point

COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT URBANA CHAMPAIGN

Gradient Descent

Gradient Descent

- Uses the negative of the function gradient as the search direction.
- We use a central difference approximation $\delta_h[f](x) = f\left(x + \frac{1}{2}h\right) - f\left(x - \frac{1}{2}h\right)$ to estimate the gradient.
- Pick direction as $\mathbf{p}_k = -\nabla f(x_k)$, perform line search.
- Parameters are step size and line search density (we cannot make any assumptions due to non-smooth nature of problem, so we have to sample).

BFGS

Broyden-Fletcher-Goldfarb-Shanno (BFGS)

At step k, the search direction $\ensuremath{\mathbf{p}}_k$ is solved using:

 $\mathbf{B}_{\mathbf{k}}\mathbf{p}_{\mathbf{k}} = -\nabla f(x_k)$

and \mathbf{B}_{k} , the approximate Hessian, is updated at each step with

$$\mathbf{B}_{k+1} = \mathbf{B}_k + \frac{\mathbf{y}_k \mathbf{y}_k^T}{\mathbf{y}_k^T \mathbf{s}_k} - \frac{\mathbf{B}_k \mathbf{s}_k \mathbf{s}_k^T \mathbf{B}_k}{\mathbf{s}_k^T \mathbf{B}_k \mathbf{s}_k} \text{ where } \mathbf{s}_k = \mathbf{x}_k - \mathbf{x}_{k-1}$$

and $\mathbf{y}_k = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$
Shown to have good performance even for non-smooth optimizations [4].

[4] A.S. Lewis and M.L. Overton. Nonsmooth optimization via BFGS. Submitted to SIAM Journal of Optimization, 2009.

Nelder Mead

 Optimization is evaluated across simplex: convex hull of n+1 vertices for n-dimensional problem.

- For tetrahedral mesh, simplex is also a tetrahedron (not to be confused with the elements of the mesh).
- Performs a series of transformations of simplex to decrease function value at vertices.
- Terminate when function value is small enough (early termination), when simplex is small enough, or when function value at simplex points are close enough.
- Derivative free.

Parallelization

- Want to use all processors available on a system 5
- Ş Per-thread optimization of a vertex position
 - Use both CPU and GPU cores
 - Local approach exposes fine-grained parallelism
- Cannot simultaneously optimize neighboring vertices 3
- Any independent set of vertices can be optimized in parallel Ş
 - S Use graph-coloring heuristic First Fit to create independent sets
- Ş **First Fit**
 - Serial, greedy coloring of vertices...
 - S Colors are integer labels
 - For each vertex and assign lowest integer label not used on a neighbor
 - Optimal coloring minimizing number of sets is NP-Hard

Issues with First-Fit Coloring

It is the bottleneck in terms of scalability

- For large meshes non-locality causes bad memory access pattern
- S There are distributed/parallel algorithms that we have not explored
- S Advice would be welcomed....

Different orderings of vertex optimizations produce different final qualities
 Not clear how (or if) coloring could be biased to produced better orderings

COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT URBANACERAMPAIGN

Load Balancing

- Solution wertices are optimized on the CPU vs. GPU
- Surrent implementation uses an admittedly poor heuristic
 - Surface optimized on CPU and volume on GPU
- § Why?
 - Surface is a 2D object...should generate smaller sets
 - Smaller sets would hide GPU latency less well
 - S Architecture of current software made it the easiest approach
- Setter approach would be to use a threshold size for a set
 - S Determine threshold based on bus latency estimate

COMPUTER SCI UNIVERSITY OF ILLINOIS AT URBAN

GPU Implementation (Fermi)

Nelder-mead uses too many registers (capped at 63 in pre-K20 systems, limiting occupacy to 33%).

Instead, use GPU as a streaming processor, cache entire neighborhood in shared memory.

Entire shared memory (48KB) is consumed by 1 block, so only 1 block can occupy SM. Each vertex is float3 + index = 16 bytes. Connectivity table is also stored in shared memory.

Typically, can still use 64 thread blocks (on some high connectivity meshes, only 32 thread blocks are possible).

Occupancy goes way down (4%), but paradoxically, performance is increased by 25%.

GPU Implementation (Kepler SMX)

- § Higher number of registers per-thread
 - S Register spill is avoided
- Speedup of 2.5 over Fermi class
- Son either class of hardware
 - Solution No register spill for BFGS or Gradient Descent

Sidenote: Surface Mesh Feature Preservation

- Medial Quadric suggested by Jiao and Bayyana [2008]
- Sormal tensor for a vertex v
 - $\mathbf{M} = \sum w_i \mathbf{n}_i \mathbf{n}_i^{\mathrm{T}}$
 - Sum of area weighting outer-product of face normal around v
- Eigenvalues of tensor classify vertices
 - **§** smooth (three distinct eigenvalues)
 - ridge (two distinct eigenvalues)
 - corner (one distinct eigenvalue)
 - Computation is local and parallelizable
- On ridges optimization can be done by golden section search
 - Convergence guarantee for unimodal functions

COMPUTER SCI

Experimental Setup

S Xeon X5650 CPU, 6 cores at 2.67 GHz, 16GB main memory

- S C2050 GPU (Fermi class) 448 cores and 2.6GB memory
- S GTX Titan 2688 cores and 6GB memory

§ OpenMP+CUDA

Results: Quality Comparison

Table 1 Quality of optimized meshes compared to original

Mesh	Number of Elements	Maximum IMR after No Optimization	Quality Interior Only Optimization	Quality Full Optimization
Small Rocket	468,623	2.229	1.992	1.84
Big Sphere	4,720,255	8.645	5.813	3.705
Big Rocket	14,992,367	14.971	5.0897	3.566

Table 2 Quality of combined optimization with different methods on GTX Titan (normalized to GPU time of 100 iterations of Nelder-Mead)

			•		
Mash		Number	Quality	Quality	Quality
	Mesh	of Elements	Nelder-Mead	BFGS	Gradient Descent
	Small Rocket	468,623	1.84	1.99	1.99
	Big Sphere	4,720,255	3.705	4.34	4.44
	Big Rocket	14,992,367	3.566	3.93	3.84

COMPUTER SCIENCE

Results: Speedup over serial

 Table 3 Performance comparison of parallel methods with serial

38,673

1,048,578

576,688

16.0

341.1

381.5

Small Rocket

Big Sphere

Big Rocket

	Mash	Interior Vartices	Serial	OpenMP	C2050	GTX Tita	n
	Mesh	Interior vertices	(s)	(Speedup) (Speedup)	(Speedup))
	Small Rocket	58,981	60.7	8.4	8.0	14.0	
	Big Sphere	290,739	571.1	7.1	9.4	21.5	
	Big Rocket	2,202,793	1967.2	7.7	5.9	16.4	
(b) Speedup	over serial of surface	vertex optimization	on (c)	Speedup ov	er serial of com	bined optimi	zation (GTX Tita
Mesh	Surface Vartices	Serial OpenN	IP EI	Elements Total V	Total Vartices	Serial 1	Parallel CPU+GP
	Surface vertices	(s) (Speed	up) Li	lements	Total vertices	(s)	(Speedup)

3.1

2.5

4.1

(a) Speedup over serial of interior vertex optimization

468,623

4,720,255

14,992,367

97,654

1,339,317

2,779.481

76.8

912.2

2348.7

14.6

10.9

15.7

COMPUTER SCIENCE