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The Power of Computation

O Origami has undergone a revolution thanks to computation

O An algorithmic approach and computational tools
Robert Lang: TreeMaker (can compute crease pattern for a particular class of origami base)
Tomohiro Tachi: Origamizer and Freeform Origami

O Enable people to create art of amazing complexity



Origami Engineering

O Origami has shockingly varied applications
Robotics — arms, Transformers
Manufacturing — sheet metal construction
Bio/Medical — stents, drug delivery, protein folding
Architecture — collapsible structures

O Satellite Sail
Used to de-orbit satellites
Uses inflatable origami mast
Small on delivery, large on deployment
Foldability, minimal material deformation, small diameter
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Origami Mast

Inflatable Origami Mast
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What questions do we want to

answere

O Foldability: Which crease patterns can be folded?
Flattened into parallel layers of paper squashed into the plane
Can we develop an algorithm to decide this?

O Design: Can we find a crease pattern to generate a given
final shape@

Efficient stick-figures [TreeMaker]
2D Polygon
3D Polyhedron



Mountain and Valley Folds

O Two kinds of fold
Mountain - 4 ¥
Valley -.. Q‘ %

O Do some origami:




Flat Foldability

O Origami usually A
produces a 3D object R

O Inintermediafe stages, it [s7 77
is often folded flat in the Fo
plane P ez

O Flat Foldability e
Able to be configuredin [ § i
flat parallel sheets




If a pattern is flat-foldable then...

O Let’s look for rules that must be true if a pattern is flat-foldable
These are called NECESSARY conditions
They can’t tell is if a pattern is flat-foldable (SUFFICIENT)
But if a pattern fails to follow the rule, then it is not flat-foldable

O Fold a flat pattern with a single vertex in the middle....what rules
can you come up with¢

O You have 5 minutes.....



If a pattern is flat-foldable then...

O What can we say about the number of creases going though the
central point in a flat folding?

O What about this patterne




If a pattern is flat-foldable then...

O What can we say about the number of mountain creases and
valley creases going though the central point in a flat folding?



The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of
a flat folding then M=V+2 or V=M+2

Imagine you are bug
walking around the
folded paper

You start walking from
point p....




The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of
a flat folding then M=V+2 or V=M+2

Every time you hit @
Mountain fold your
direction changes by how
many degrees?¢

Every time you hit a Valley

fold your direction

ce—, e changes by how many
degrees?




The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of
a flat folding then M=V+2 or V=M+2

- 3 " When you get back fo P, by
2 . how many degrees has your
. . direction changed?




The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of
a flat folding then M=V+2 or V=M+2

(180 x M) — (180 x V) = 360




The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of
a flat folding then M=V+2 or V=M+2

K% X (180 x M) — (180 x V) = 360
i / .o ¢ 180 (M —V) = 360




The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of
a flat folding then M=V+2 or V=M+2

(180 x M) — (180 x V) = 360

180 (M —V) = 360

(M-V) = 2




The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of
a flat folding then M=V+2 or V=M+2

(180 x M) — (180 x V) = 360

180 (M —V) = 360

(M-V) = 2

M=V +2




The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of
a flat folding then M=V+2 or V=M+2

C.
2 03
K
Cg

How do we know V=M+2 is
possible?

What happens if you flip the
papere




The Maekawa-Justin Theorem

O Suppose | wrote a program to determine if the M-J
Theorem holds for a sequence of n folds.
About how many instructions would the program need to
executee



A Necessary Condition is not Enough

60° . s this crease pattern flat-foldable?e

-

680° |30 Does M-V = 272




The Kawasaki-Justin Theorem

g, 6, 65 6, ..+6,,

Can you fill in the blanks with + and/or —in a way that
makes the statement frue?



The Kawasaki-Justin Theorem

Let &, be the angles formed by creases incident to a vertex.

A set of an even number of creases that meet at a vertex
folds flatif and only if €,-8,+68;-6,+..+6,,-6,=0°



Do we know enough?

O Does what we have learned let me decide if this crease
pattern is flat-foldable<¢




What does “hard to compute”

meane

O Informally, it means that the time ™|
required to compute the answer
grows really rapidly as a function of .}

the input

1000

For example, if we have a problem
that involves n creases and it fakes 2"
instructions to find an answer

If the number of instructions is given
by a polynomial function, like n?,
then the computation is generally
not considered to be hard
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Graph taken from
https://stackoverflow.com/
questions/16388759/slowest-
computational-complexity-big-o



Origami Is hard

O There is no known algorithm for deciding foldability in
polynomial fime

O The problem is NP-Hard which means if there were a fast
solution, we could solve a lot of other problems quickly as
well...

O Finding a fast solution to an NP-Hard problem would one of the
greatest mathematical discoveries. Ever.



Open Problem

O Anorigami map is aregular grid of squares
each crease marked as a mountain or valley fold.

2 1 7

3 9 8

O s there an efficient algorithm for determining if a given
rectangular map can fold flate

O Answer is unknown even for the 2 x n case



And the solution...

4 S 6 I
T F
3 9 8 (b)

(a)




Unattributed images and figures are taken from the excellent book:

How To Fold It: The Mathematics of Linkages, Origami, and Polyhedra.

By Joseph O'Rourke.
Cambridge University Press, 177 pages. ISBN 978-0521145473. 2011.
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