A Quick Introduction to Computational Origami

Images courtesy of Dr. Robert Lang

Eric Shaffer
 Department of Computer Science University of Illinois at Urbana-Champaign

The Power of Computation

- Origami has undergone a revolution thanks to computation

ㅁ An algorithmic approach and computational tools

- Robert Lang: TreeMaker (can compute crease pattern for a particular class of origami base)
- Tomohiro Tachi: Origamizer and Freeform Origami
- Enable people to create art of amazing complexity

Origami Engineering

- Origami has shockingly varied applications
- Robotics - arms, Transformers
- Manufacturing - sheet metal construction
- Bio/Medical - stents, drug delivery, protein folding
- Architecture - collapsible structures
- Satellite Sail
- Used to de-orbit satellites
- Uses inflatable origami mast
- Small on delivery, large on deployment
\square Foldability, minimal material deformation, small diameter

Origami Mast

Inflatable Origami Mast

What questions do we want to answer?

- Foldability: Which crease patterns can be folded?
- Flattened into parallel layers of paper squashed into the plane
\square Can we develop an algorithm to decide this?
- Design: Can we find a crease pattern to generate a given final shape?
- Efficient stick-figures [TreeMaker]
- 2D Polygon
- 3D Polyhedron

Mountain and Valley Folds

- Two kinds of fold
- Mountain -
- Valley -..

- Do some origami:

Flat Foldability

- Origami usually produces a 3D object

- In intermediate stages, it is often folded flat in the plane
- Flat Foldability

Able to be configured in flat parallel sheets

If a pattern is flat-foldable then...

- Let's look for rules that must be true if a pattern is flat-foldable
- These are called NECESSARY conditions
- They can't tell is if a pattern is flat-foldable (SUFFICIENT)
- But if a pattern fails to follow the rule, then it is not flat-foldable
- Fold a flat pattern with a single vertex in the middle.... what rules can you come up with?
- You have 5 minutes.....

If a pattern is flat-foldable then...

- What can we say about the number of creases going though the central point in a flat folding?
- What about this pattern?

If a pattern is flat-foldable then...

- What can we say about the number of mountain creases and valley creases going though the central point in a flat folding?

The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of a flat folding then $\mathrm{M}=\mathrm{V}+2$ or $\mathrm{V}=\mathrm{M}+2$

Imagine you are bug walking around the folded paper

You start walking from point p....

The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of a flat folding then $\mathrm{M}=\mathrm{V}+2$ or $\mathrm{V}=\mathrm{M}+2$

Every time you hit a Mountain fold your direction changes by how many degrees?

Every time you hit a Valley fold your direction changes by how many degrees?

The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of a flat folding then $\mathrm{M}=\mathrm{V}+2$ or $\mathrm{V}=\mathrm{M}+2$

When you get back to P, by how many degrees has your direction changed?

The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of a flat folding then $\mathrm{M}=\mathrm{V}+2$ or $\mathrm{V}=\mathrm{M}+2$

$(180 \times M)-(180 \times V)=360$

The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of a flat folding then $\mathrm{M}=\mathrm{V}+2$ or $\mathrm{V}=\mathrm{M}+2$

$(180 \times M)-(180 \times V)=360$
$180(M-V)=360$

The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of a flat folding then $\mathrm{M}=\mathrm{V}+2$ or $\mathrm{V}=\mathrm{M}+2$

$$
\begin{aligned}
& (180 \times M)-(180 \times V)=360 \\
& 180(M-V)=360 \\
& (M-V)=2
\end{aligned}
$$

The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of a flat folding then $\mathrm{M}=\mathrm{V}+2$ or $\mathrm{V}=\mathrm{M}+2$

$$
\begin{aligned}
& (180 \times M)-(180 \times V)=360 \\
& 180(M-V)=360 \\
& (M-V)=2 \\
& M=V+2
\end{aligned}
$$

The Maekawa-Justin Theorem

If M mountain creases and V valley creases meet a vertex of a flat folding then $\mathrm{M}=\mathrm{V}+2$ or $\mathrm{V}=\mathrm{M}+2$

How do we know $\mathrm{V}=\mathrm{M}+2$ is possible?

What happens if you flip the paper?

The Maekawa-Justin Theorem

- Suppose I wrote a program to determine if the M-J Theorem holds for a sequence of \mathbf{n} folds. About how many instructions would the program need to execute?

A Necessary Condition is not Enough

Is this crease pattern flat-foldable?
Does $M-V=2$?

The Kawasaki-Justin Theorem

$\theta_{1} \ldots \theta_{2} \ldots \theta_{3} \ldots \theta_{4} \ldots \ldots+\theta_{n-1} \ldots \theta_{n}=0^{\circ}$
Can you fill in the blanks with + and/or - in a way that makes the statement true?

The Kawasaki-Justin Theorem

Let θ_{i} be the angles formed by creases incident to a vertex.
A set of an even number of creases that meet at a vertex folds flat if and only if $\theta_{1}-\theta_{2}+\theta_{3}-\theta_{4}+\ldots+\theta_{n-1}-\theta_{n}=0^{\circ}$

Do we know enough?

- Does what we have learned let me decide if this crease pattern is flat-foldable?

What does "hard to compute" mean?

- Informally, it means that the time required to compute the answer grows really rapidly as a function of the input

- For example, if we have a problem that involves n creases and it takes 2^{n} instructions to find an answer
- If the number of instructions is given by a polynomial function, like n^{2}, then the computation is generally

Origami is hard

There is no known algorithm for deciding foldability in polynomial time

- The problem is NP-Hard which means if there were a fast solution, we could solve a lot of other problems quickly as well...
- Finding a fast solution to an NP-Hard problem would one of the greatest mathematical discoveries. Ever.

Open Problem

- An origami map is a regular grid of squares \square each crease marked as a mountain or valley fold.

2	1	7
4	5	$\underline{6}$
3	$\underline{9}$	8

- Is there an efficient algorithm for determining if a given rectangular map can fold flat?
- Answer is unknown even for the $\mathbf{2 x n}$ case

And the solution...

Unattributed images and figures are taken from the excellent book:
How To Fold It: The Mathematics of Linkages, Origami, and Polyhedra. By Joseph O'Rourke.
Cambridge University Press, 177 pages. ISBN 978-0521145473. 2011.

