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The Power of Computation 

¤  Origami has undergone a revolution thanks to computation 

¤  An algorithmic approach and computational tools 

¤  Robert Lang: TreeMaker (can compute crease pattern for a particular class of origami base) 

¤  Tomohiro Tachi: Origamizer and Freeform Origami 

¤  Enable people to create art of amazing complexity



Origami Engineering 

¤  Origami has shockingly varied applications 
¤  Robotics – arms, Transformers 

¤  Manufacturing – sheet metal construction 

¤  Bio/Medical – stents, drug delivery, protein folding 

¤  Architecture – collapsible structures 

¤  Satellite Sail 
¤  Used to de-orbit satellites 

¤  Uses inflatable origami mast 

¤  Small on delivery, large on deployment 

¤  Foldability, minimal material deformation, small diameter 
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Origami Mast 
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What questions do we want to 
answer? 

¤  Design: Can we find a crease pattern to generate a given 
final shape? 
¤  Efficient stick-figures [TreeMaker] 

¤  2D Polygon 

¤  3D Polyhedron 

¤  Foldability: Which crease patterns can be folded? 
¤  Flattened into parallel layers of paper squashed into the plane 

¤  Can we develop an algorithm to decide this? 



Mountain and Valley Folds 

¤  Two kinds of fold 
¤  Mountain  -  

¤  Valley -.. 

¤  Do some origami: 

-..--- 



Flat Foldability 

¤  Origami usually 
produces a 3D object 

¤  In intermediate stages, it 
is often folded flat in the 
plane 

¤  Flat Foldability 
Able to be configured in 
flat parallel sheets  



If a pattern is flat-foldable then… 

¤  Let’s look for rules that must be true if a pattern is flat-foldable 
¤   These are called NECESSARY conditions 
¤   They can’t tell is if a pattern is flat-foldable (SUFFICIENT) 
¤   But if a pattern fails to follow the rule, then it is not flat-foldable 

¤  Fold a flat pattern with a single vertex in the middle….what rules 
can you come up with? 

¤  You have 5 minutes….. 



If a pattern is flat-foldable then… 

¤  What can we say about the number of creases going though the 
central point in a flat folding? 

¤  What about this pattern? 

---- 



If a pattern is flat-foldable then… 

¤  What can we say about the number of mountain creases and 
valley creases going though the central point in a flat folding? 



The Maekawa-Justin Theorem 

If M mountain creases and V valley creases meet a vertex of 
a flat folding then M=V+2 or V=M+2 

Imagine you are bug 
walking around the 
folded paper 

You start walking from 
point p…. 



The Maekawa-Justin Theorem 

If M mountain creases and V valley creases meet a vertex of 
a flat folding then M=V+2 or V=M+2 

Every time you hit a 
Mountain fold your 
direction changes by how 
many degrees? 

Every time you hit a Valley 
fold your direction 
changes by how many 
degrees? 



The Maekawa-Justin Theorem 

If M mountain creases and V valley creases meet a vertex of 
a flat folding then M=V+2 or V=M+2 

When you get back to P, by 
how many degrees has your 
direction changed? 



The Maekawa-Justin Theorem 

If M mountain creases and V valley creases meet a vertex of 
a flat folding then M=V+2 or V=M+2 

(180 × M) – (180 × V) = 360 



The Maekawa-Justin Theorem 

If M mountain creases and V valley creases meet a vertex of 
a flat folding then M=V+2 or V=M+2 

(180 × M) – (180 × V) = 360 
 
180 (M –V) = 360 
 



The Maekawa-Justin Theorem 

If M mountain creases and V valley creases meet a vertex of 
a flat folding then M=V+2 or V=M+2 

(180 × M) – (180 × V) = 360 

180 (M –V) = 360 

(M-V) = 2 



The Maekawa-Justin Theorem 

If M mountain creases and V valley creases meet a vertex of 
a flat folding then M=V+2 or V=M+2 

(180 × M) – (180 × V) = 360 
 
180 (M –V) = 360 
 
(M-V) = 2 
 
M = V + 2 



The Maekawa-Justin Theorem 

If M mountain creases and V valley creases meet a vertex of 
a flat folding then M=V+2 or V=M+2 

 How do we know V=M+2 is 
possible? 

 

What happens if you flip the 
paper? 



The Maekawa-Justin Theorem 

¤  Suppose I wrote a program to determine if the M-J 
Theorem holds for a sequence of n folds. 
About how many instructions would the program need to 
execute? 



A Necessary Condition is not Enough 

Is this crease pattern flat-foldable? 

Does M-V = 2? 



The Kawasaki-Justin Theorem 

θ1  __ θ2  ___ θ3  ___ θ4 ___…+θn-1 ___θn = 0° 

Can you fill in the blanks with  + and/or – in a way that 
makes the statement true? 



The Kawasaki-Justin Theorem 

Let θi be the angles formed by creases incident to a vertex. 

A set of an even number of creases that meet at a vertex 
folds flat if and only if θ1 -θ2+θ3 -θ4+…+θn-1 –θn = 0° 



Do we know enough? 

¤  Does what we have learned let me decide if this crease 
pattern is flat-foldable? 
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What does “hard to compute” 
mean? 

¤  Informally, it means that the time 
required to compute the answer 
grows really rapidly as a function of 
the input 

¤  For example, if we have a problem 
that involves n creases and it takes 2n

instructions to find an answer 

¤  If the number of instructions is given 
by a polynomial function, like n2, 
then the computation is generally 
not considered to be hard 

Graph taken from
https://stackoverflow.com/
questions/16388759/slowest-
computational-complexity-big-o



Origami is hard 

¤  There is no known algorithm for deciding foldability in 
polynomial time 

¤  The problem is NP-Hard which means if there were a fast 
solution, we could solve a lot of other problems quickly as 
well… 

¤  Finding a fast solution to an NP-Hard problem would one of the 
greatest mathematical discoveries. Ever. 



Open Problem 

¤   An origami map is a regular grid of squares 
¤   each crease marked as a mountain or valley fold. 

¤  Is there an efficient algorithm for determining if a given 
rectangular map can fold flat? 

¤  Answer is unknown even for the 2 x n case 
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And the solution… 
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Unattributed images and figures are taken from the excellent book:

How To Fold It: The Mathematics of Linkages, Origami, and Polyhedra. 
By Joseph O'Rourke.
Cambridge University Press, 177 pages. ISBN 978-0521145473. 2011. 
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